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ABSTRACT

Estimating the generalization performance of learning algorithms is one of the main
purposes of machine learning theoretical research. The previous results describing the
generalization ability of Tikhonov regularization algorithm are almost all based on
independent and identically distributed (i.i.d.) samples. In this paper we go far beyond
this classical framework by establishing the bound on the generalization ability of
Tikhonov regularization algorithm with geometrically beta-mixing observations. We
first establish two refined probability inequalities for geometrically beta-mixing
sequences, and then we obtain the generalization bounds of Tikhonov regularization
algorithm with geometrically beta-mixing observations and show that Tikhonov

regularization algorithm with geometrically beta-mixing observations is consistent.
These obtained bounds on the learning performance of Tikhonov regularization
algorithm with geometrically beta-mixing observations are proved to be suitable to
geometrically ergodic Markov chain samples and hidden Markov models.

© 2010 Elsevier B.V. All rights reserved.

Regularization error
Sample error

1. Introduction

Recently there has been a large increase of the interest for theoretical issues in the machine learning community. It is
mainly due to the fact that statistical learning theory has demonstrated its usefulness by providing the ground for
developing successful and well-founded learning algorithms such as support vector machines (SVMs) (Vapnik, 1998).
Besides their good performance in practical applications they also enjoy a good theoretical justification in terms of both
universal consistency and learning rates (see Steinwart and Christmann, 2008; Chen et al., 2004) if the training samples
come from an i.i.d. process. This renewed interest for theory naturally boosted the development of performance bounds
(see Chen et al., 2004; Cucker and Smale, 2001; Cucker and Zhou, 2007; Smale and Zhou, 2003 ). However, independence is
a very restrictive concept in several ways (Steinwart et al., 2009; Vidyasagar, 2003). First, it is often an assumption, rather
than a deduction on the basis of observations. Second, it is an all or nothing property, in the sense that two random
variables are either independent or they are not—the definition does not permit an intermediate notion of being nearly
independent. As a result, many of the proofs based on the assumption that the underlying stochastic sequence is i.i.d. are
rather “fragile”. The notion of mixing allows one to put the notion of “near independence” on a firm mathematical
foundation, and moreover, permits one to derive a robust rather than a “fragile” theory. In addition, this i.i.d. assumption
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cannot be strictly justified in real-world problems. Therefore, relaxations of the independence assumption have been
considered for quite a while in both machine learning and statistical literature. For example, Yu (1994) established the
rates of convergence for empirical processes of stationary mixing sequences. White (1989) considered cross-validated
regression estimators for strongly mixing processes. Modha and Masry (1996) established the minimum complexity
regression estimation with m-dependent observations and strongly mixing observations respectively. Vidyasagar (2003)
considered the notions of mixing and proved that most of the desirable properties (e.g. PAC property or UCEMUP property)
of i.i.d. sequence are preserved when the underlying sequence is mixing sequence. Nobel and Dembo (1993) proved that if
a family of functions has the property that the empirical means based on i.i.d. sequences converge uniformly to their values
as the number of samples approaches infinity, then the family of functions continues to have the same property if the i.i.d.
sequence is replaced by f—mixing sequence. Karandikar and Vidyasagar (2002) extended this result to the case where the
underlying probability is itself not fixed, but varies over a family of measures. Steinwart et al. (2009) proved that the SVMs
algorithm for both classification and regression are consistent if the samples of processes satisfying the law of large
numbers. Xu and Chen (2008) established the learning rates of regularized regression for exponentially strongly mixing
sequences. Smale and Zhou (2009) studied online learning algorithm with Markov sampling. Zou and Li (2007) established
the performance bounds of ERM learning algorithms with exponentially strongly mixing sequences. Sun and Wu (2010)
considered the regularized least square regression with dependent samples.

There are many definitions of non-independent sequences in Vidyasagar (2003) and Steinwart et al. (2009), but we are
only interested in f—mixing sequence in this paper, the reasons are as follows: First, Vidyasagar (2003) pointed out that in
machine learning applications, ¢—mixing is “too weak” an assumption and ¢—mixing is “too strong” an assumption,
f—mixing is “just right” and more meaningful in the context of PAC learning. Second, Markov chain samples appear so
often and naturally in applications, especially in biological (DNA or protein) sequence analysis, speech recognition,
character recognition, content-based web search and marking prediction, and Vidyasagar (2003) and Meyn and
Tweedie (1993) proved that a very large class of Markov chains and hidden Markov models (HMM) can produce
p—mixing sequences. To study the generalization performance of Tikhonov regularization algorithm with geometrically
beta-mixing observations, in this paper we first establish two refined concentration inequalities for geometrically beta-
mixing sequences. We then obtain the bound on the learning rates of Tikhonov regularization algorithm with
geometrically beta-mixing observations, and prove that Tikhonov regularization algorithm with geometrically beta-mixing
observations is consistent.

The rest of this paper is organized as follows: In Section 2, we introduce the definitions of beta-mixing sequence and
Tikhonov regularization algorithm. In Section 3 we establish two refined concentration inequalities for geometrically beta-
mixing sequences. We obtain the bound on the learning rates of Tikhonov regularization algorithm with geometrically
beta-mixing observations in Section 4. Finally, we give some significant conclusions in Section 5.

2. Preliminaries

We introduce some notations and do some preparations in this section.

Let Z={z; = (x;,y;)}{> _., be a stationary real-valued stochastic process defined on a probability space (£°°,7*,P). For
—oo <i<oo, let F*_ denote the g—algebra generated by the random variables z;,i < k, and similarly let Fi° denote the
og—algebra generated by the random variables z;,i> k. Let P¥ _ and Py denote the correspondmg marginal probability
measures respectively. Let Py denote the marginal probability of each of the z;. Let 7 1 ! denote the o— algebra generated by
the random variables z;,i < 0 as well as z;,j > k. With these notations, there are several definitions of mixing, but we shall be
concerned with only one, namely, f—mixing in this literature (see Steinwart et al., 2009; Vidyasagar, 2003; Yu, 1994).

Definition 1 (Vidyasagar, 2003). The sequence Z = {z; = (x;,y)}{>. _, is called f—mixing, or completely regular, if
sup [P(O)—(P°, x P3)(C) = Bk)—»0 as k— oo,

—k—
cery!

where f(k) is called the f—mixing coefficient.

Assumption 1 (Vidyasagar, 2003). The sequence Z is called geometrically f—mixing, if for some constants ¢ and o < 1, the
f—mixing coefficient satisfies

Bl < pok, k>1.

Remark 1. (i) In Definition 1, if the “future” events beyond time k were to be truly independent of the “past” events before
time 0, then the probability measure P would exactly equal the “split” measure P°  x P°. The f—mixing coefficient thus
measures how nearly the product measure approximates the actual measure P.

(ii) If the sequence Z consists of i.i.d. random variables, then P equals the measure (Py)>°, which denotes the measure on
(2%°,F7°). In such a case, the mixing coefficient (k) is zero for any integer k, that is, i.i.d. random variables satisfy
Assumption 1.

oS}
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Denote by S the training sample set of size m
S={z1 =(X1.y1).22 = (X2,¥2), - - - \Zm = Xm,Y'm)}

drawn from the geometrically f—mixing sequence Z. Given a function set H, the goal of machine learning from the sample
set S is to find a function f : X - so that it has small expected risk (or error)

£() = E[((F.2)] = /Z ((F.2)d(Po),

where X is a compact space, and the function ¢(f,z) is a non-negative loss function. Since our aim is to discuss general
learning problems, we will consider the loss function of general form ¢(f,z) in the sequel.

Let Q:H— R, be a penalty functional over the hypothesis space 7. The ERM with Tikhonov (1963) regularization
solves the problem

fs,= argf}lgl{gm(f)+l9(f)} (M

with 4> 0 a constant, where &£;(f) is defined as

Z f(f,Zi)A
i=1

The functional Q(f) is called the regularizer and the constant 4 is called the regularization parameter, it often depends on
the sample size m: 1 = A(m) and satisfies 2—0 as m— oo.
Thus our purpose of this paper is to estimate the difference

Efs)—E()

between the value of achieved risk £(fs ;) and the value of minimal possible risk £(f*) over all measure functions. According
to the definition of the output function f;;, for any f; € X, there holds

Em(fs,2) +AQ(fs ;) < Em(F)+2Q(F,).
Hence we have
E(s )—E() < EFs )—EF)+22(fs ;) < {EFs )—Em(Fs )+ En(F)—EE HEFH-EF) +AQ()}. 2

The second term in inequality (2) depends on the choice of #, but is independent of sampling, we will call it the
regularization error (see Cucker and Smale, 2001; Steinwart and Scovel, 2005; Wu et al., 2006). The first term is called the
sample error.

5m(f):

3=

Definition 2 (Wu et al., 2006). The regularization error for a function f;, € H is defined as
D) = E(f)—E) + 21Q2(f)).
The function f; is called the regularizing function.

Since the minimization (1) is taken over the discrete quantity £, (f), to estimate the difference £(fs ;)—£(f*), we need to
estimate the capacity of the function set that contains fs ;. The capacity is measured by the covering number of % in this
paper.

Definition 3. For a subset M of a metric space and any ¢ > 0, the covering number N (M,¢) of the set M is the minimal
n e N such that there exist n disks in M with radius ¢ covering M.

Define the ball of radius R > 0 in the hypothesis space H as

Bo(R)={f € H: Q(f)<R’}, 0>1.

We close this section by presenting some basic assumptions on the hypothesis space 7 and the loss function ¢(f,z):
(i) We suppose that  is contained in a ball of a Hélder space ? on a compact subset of an Euclidean space R? for some
p > 0 (Zhou, 2003). Then we can assume that for any ¢ > 0, the covering number of the unit ball satisfies

N(Bo(1),6) < exp{Coe VP
for some constant Cy > 0. By dilation, we thus have that for any ¢ > 0,
N(Bo(R),e) < exp{CoR?/Pg=2d/P}, 3)
(ii) Let H'=H U {f*}, we define

M = sup max{(f,z), L= sup maxW
fen 2€2 81#82.81.82H €2 181—8&2I

and we assume that M and L are finite in this paper.
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Remark 2. Note that reproducing kernel Hilbert spaces (RKHS) plays an essential role in the analysis of learning theory
(see e.g. Chen et al., 2004; Cucker and Smale, 2001, 2002). But Zhou (2003) proved that if a Mercer kernel is CP(X) (p > 0),
then the RKHS associated with this kernel can be embedded into CP/?(x). This is the reason why we consider the function
space CP(X) in this paper.

3. Refined probability inequalities

In this section, we establish two refined concentration inequalities for f—mixing sequences. Our approach is based on
the following three lemmas:

Lemma 1 (Vidyasagar, 2003). Suppose iy <ii < --- <1 are integers, and define

k= min i, q—i.
Osjslqwrl J

Suppose g is essentially bounded and depends only on z;,,z;,, ...,z;. Then
|E(g,P)—E(g,P5")| < 1B(K)IIglls,
where E(g,P) and E(g,P3°) are the expectation values of g with respect to P and P§° respectively.

Lemma 2 (Hoeffding, 1963). Suppose that & is a zero-mean random variable assuming values in the interval [a, b]. Let E[g]
denote the expectation value of g. Then for any s > 0,

E[exp(s&)] < exp(s?(b—a)?/8).

Lemma 3 (Cucker and Smale, 2002). Let cq,c; >0, and s > q > 0. Then the equation
x—c1x1—c; =0
has a unique positive zero x*. In addition
x* < max{(2c;)"/¢,(2¢,) /9.
To exploit the f—mixing property, we decompose the index set [={1,2,...,m} into different parts as follows: Given an
integer m, choose any integer k,, <m, and define I, = [m/kn] to be the integer part of m/ky,. For the time being, k, and I,

are denoted respectively by k and [ so as to reduce notational clutter. The dependence of k and [ on m is restored near the
end of the paper. Let r=m—kl, and define

(i, i+k, ..., i+Ilk}, i=12,...,
=34, ik, ..., i+d-Dky, i=r+1,..., k

Note that [ J;]; equals the index set {1,2,...,m} and that within each set I;, the elements are pairwisely separated by at least k.
Then we first establish the following theorem.

Theorem 1. Let Z be a stationary [ mixing sequence with the mixing coefficient satisfying Assumption 1. Let

1)) sm 2"
" :{mHln(]/a)} l J

where m denotes the number of observations and |u] ([ul) denotes the greatest (least) integer less (greater) than or equal to u.
Then for any ¢,0 < & <3M,

_m([f)gz }

Prob{|En(H)—E() > &} < 2(1 +,ue‘2)exp{ SV

Proof. Let p; = |[;|/m for i=1,2,... .k, and define
To= 0 20-Elf 2], 7n(S) = %i T, biS)= |11_|]Z,T
Then we have
Em(N)—EF) =m(S) = Xk:] pibi(S).
iz
Since exp(-) is convex, we have that for any y > 0,

k k
exp()Tn(S)) = exp {Z Vpibi(s)] < > piexp(ybi(S)).

i=1 i=1
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Now take the expectation of both sides with respect to P, we obtain

k
E[exp(yTm(S),P] < Y _ piE[exp(ybi(S)),P].

i=1

Since

LAY
exp(ybi(S)) = exp [Illz } Hexp(ll I) < {exp(*l)”)} <eM,
jel, jel; !

where in the last step we use the fact that T; = ¢(f,z;))—E[¢(f,z;))] < M for any i=1,2,... k.
By Lemma 1, we get

E[e"™®,P] < (1I; =1)B(k) 1?2l o, + E[e7%S P&,
Since under the measure Pg, the various z; are independent, we have
E[e™® Pg*] =E [Hexp(ﬂj/u,-o.Pg"} = (E[exp(yTj/Ifi).Po]} "
Jeli

Apply Lemma 2 to the function T}, since T; has zero mean and values in an interval of width 2M. It follows from Lemma 2
that

E[exp(yT;/I1i)] < exp(y*M? /2|L;|?).

Thus

Ihi(S M2 M
E[e"%),P] < exp (W) +(IL1=1)pk)e’™.
1

It follows that

Elei™ P] < Z P {exp(’zf,”‘ ) L U-T)doe™ ). 4)

We now bound the second term on the right-hand side of inequality (4) which is denoted henceforth by ¢. We suppose
Y < 3|I;|/M, then we have that

y2M?
o =exp (T30 ) + - 1)poe™

w2 V2
<exp y-M relile=2pok . eM
2|5

21\/[2
< exp <V2|I | > + pe—2exp{kin(or)+4|L|}.

The second inequality follows from Assumption 1 and the fact that |I;|—1<ei=2 for any |;|>2. We require
exp{kln(o)+4|;]} <1, which holds if kln(o)+4|[;| <0. But |;] <(m/k+1), thus the bound holds if 4(m/k+1) < kln(1/x).
Since m+k < 2m, then the bound holds if 8m < k2In(1/a) or {8m/In(1/x)}!/? < k. Let

- |t |

Then we have

202
¢ <exp (7 M ) +pe 2. (5)
2|l
Since inequality (5) is true for all 7,0 <7y < 3|I;|/M. To make the constraint uniform over all i, we then require y satisfies
< 3l
O<y< M

Since szz/Zl > 0, we have

2 V2
¢£(1+ue’2)exp(/21\;l )
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Returning to inequality (4), we have

2012
E[e"™S) P] < (14 pe~?)exp (V 21\;1 )
By Markov's inequality, we have that for any y >0

Prob{m(S) > &} = Prob{e"™® > 7%}
- Elexp{ymm(S)},P]
a exp{ye}

202
§(1+,ue’2)exp{yzl\ld fys}.

Now by substituting y = l¢/M? and noting that if ¢ < 3M, then y satisfies y < 3[/M. We then obtain that for any ¢, 0 < & <3M,
inequality

_e2
Prob{n(S) > ¢} < (1 +pe*2)exp{%}

is valid. Since I = |m/k], replacing | by m® then implies that for any ¢, 0 < ¢ < 3M,

—mPe2
2M2 }

Prob{m,(S) > ¢} < (1 +,ue*2)exp{

By symmetry, we also have

—mPg2
2M? }

P{mm(S) < —¢e} <(1 +,ue‘2)exp{

Combining these two bounds leads to the desired inequality in Theorem 1. Then we finish the proof of Theorem 1. O
From Theorem 1, the following corollary is then immediate.

Corollary 1. With all notations as in Theorem 1, then for any 6 € (0,1), inequality

2In(C/3)
E)—Em(F) <My = 5=

holds true with probability at least 1—6 provided that m®® > 18In(C/5), where C = 1+ pe~2. The same bound holds true for
Em(N)—=E).

Proof. For any ¢ < (0,1), the positive solution to the equation with the variable ¢

(1+ue 2)exp{ SN }

is given by

2In(C/d)
e=M B

In addition, if m® > 18In(C/J), we have ¢ < 3M. Then by Theorem 1 we can complete the proof of Corollary 1. O

By Theorem 1, we obtain the following theorem on the rate of empirical risks uniformly converging to their expected
risk over the hypothesis space 7 with the same method that used in Cucker and Smale (2001). For completeness, we give a
proof.

Theorem 2. With all notations as in Theorem 1, then for any ¢,0 < ¢ < 3M,

. ‘ s B _m®e2
Prob{igglgm(f) 8(f)|>&}£2(1+ﬂe W<H'4L)exp{ V2 |

(6)
Proof. Let
H=H1UHaU---UHn, Ls(f)=E)—En(f).

then for any &> 0, whenever sups.y|E(f)—Em(f)| = 2¢, there exists k,1 <k<n such that sups., |EF)—Em(f)| = 2¢. This
implies the equivalence

suplE(f)—Em(f)l = 2¢ < 3k, 1 <k<n, s.t suplE(f)—Em(f)l=2e. )
feH feHy
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By the equivalence (7), and by the fact that the probability of a union of events is bounded by the sum of the probabilities
of these events, we have

Prob{supé‘(f)gm(f)l > 23} < Z Prob{sup|£(f)£m(f) > 28}. 8)
feH k=1 feH,

Now we estimate the term on the right-hand side of inequality (8). Let the balls D,,1 < k < n be a cover of H with center
at fi and radius ¢/2L. Then, for all S € Z™ and all f € Dy,

ILs(H—Ls(fi)l < 1EO) =S +1Em)—EmFi0l
< BIG 2ol + 0> 16 20~

i=1
&
<2 If—filw <2057 =s.

It follows that for any S € Z™ and all f € Dy,

sup|Ls(f)| = 2e=|Ls(f)l = .
feDy

We thus conclude that for any k € {1,2,...,n},

Prob{supLs(f)l > 28} < Prob{|Ls(fy)| = ¢}.

feDy

By Theorem 1, we can get

—_mBe2
Prob{|Ls(fy)| = &} s2(1+,ue’2)exp{ mee }

2M?2 ’
Then
Prob{ sup|Ls(f)| > 2¢ p < 2(1 +ue*2)exp{—2}. )
feDy M
By inequalities (8) and (9), we obtain
g —mPg2
Prob< sup|&(f)—En(f)] > 2¢ » < 2(14pe HN (H, = exp{—}. (10)
{ o e N (1) 2M2

Theorem 2 thus follows from inequality (10) by replacing ¢ by ¢/2. O

Remark 3. (i) m® in Theorems 1 and 2 is called the “effective number of observations” for the beta-mixing processes.
From Theorems 1 and 2, we can find that m® plays the same role in our analysis as that played by the number of
observations m in the i.i.d. case (see Cucker and Smale, 2001; Wu et al., 2006).

(ii) Since m® — oo as m— oo, by Theorem 2, we then have that for any ¢,0 < ¢ < 3M,

Prob{supé‘(f)gm(f)l > s} -0 as m—oo.
feH

This shows that as long as the covering number of the hypothesis space H is finite, the empirical risk &, (f) will uniformly
converge to the expected risk £(f), and the convergence speed may be exponential. This assertion is well known for the
ERM algorithm with i.i.d. samples (see, e.g. Vapnik, 1998; Cucker and Smale, 2001). Then we have generalized this classical
results in Vapnik (1998) and Cucker and Smale (2001) to the geometrically beta-mixing sequences.

By Theorem 2, we also get the following corollary.

Corollary 2. With all notations as in Theorem 1. If for any ¢ > 0, the covering number of function set H satisfies

() =eofols) )

for some constant Co > 0. Then for any ¢ € (0,1), and for all functions in ‘H, inequality
E(f)—Em(f) < &(m,d)
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holds true with probability at least 1—6 provided that m® > 18In(C/d), where

5)11/2 2d/p 27 P/Cp+2d)
8(m,5)=max{4MPn(C/0)} , {M} }

m® m®
The same bound holds true for £,(f)—&(f).

Proof. By Theorem 2, we have that for any ¢, 0 <& < 3M,

B ‘ 5 & —2d/p_ mB g2
P{?SEIS(J‘) Em(f)| >6} <2(1+pe )eXP{C°<4L> 8M2 J

Let us rewrite the above inequality in the equivalent form. We equate the right-hand side of the above inequality to a
positive value 6 (0 <o <1)

2 i —Zd/p_m(ﬁ)gz s
(1+pe )exp{C0<4L) VR =0.

It follows that

e2ap_SINC/OM 0y SGULTME _,
m® m#) :

By Lemma 3, this above equation with respect to ¢ has a unique positive zero &¢*, and

& <e(m,d) = max{4M{

In(C/8)]'?  [CoL2/p 2P/ P20
m® :| ’ { m® :| .

Then we deduce that inequality
E(f)—Em(f) < &(m,d)

is valid with probability at least 1—4 simultaneously for all functions in . In addition, if m® > 18In(C/§), we have ¢ < 3M.
Then we complete the proof of Corollary 2. O

4. Estimates error bounds

By the two refined probability inequalities (Corollaries 1 and 2) obtained in the last section, we can establish the error
bound of Tikhonov regularization algorithm with geometrically f—mixing observations as follows:

Theorem 3. Let Z be a stationary [;-mixing sequence with the mixing coefficient satisfying Assumption 1, that is, the f-mixing
coefficient of sequence Z satisfies

Bl < pok, k=1

for some constants p and o < 1. Then for any T > 1, inequality

Efs )—E() SM\/%"_SH(”‘LT)"—D(;L) an

holds true with probability at least 1—e~" provided that m®® > 18(In(2C)+1), where

p/2p+2d) }

Proof. By Corollary 1, we have that there exists a subset V; of Z™ with probability at least 1—e~° such that for any S € V;

2(InC
Entf-E) <My 2D, a2)

Applying Corollary 2 to B,(R), we have that for all f € Bo(R), there exists a subset V(R) of Z™ with probability at least 1—e 7,
ER)—Em(f) < &(m,7), (13)

where

InRC)+11"%  [ColL - (M/2)/P124/P M2
m®) ! m®

g'(m,1)= max{4M [

e(m,7) = max{4M {

2p+2d
(nC+)]"2 , [CoRry4Pm2] "2
m) ’ m® :
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Let
W(R)={S e Vi : fs, € Bo(R)}.

Combine inequalities (12) and (13) with inequality (2), we deduce that for any S € V(R) n W(R), with probability at least
1—e7,

g(fS,A)_g(f*)"_)vQ(fS,i) < M\ / %4—8(”’1,‘[)+D(2), (14)

where

/(2p +2d)

) In20)+11"2  [CoRPM2]”
g(m,7)= max{4M {W} e = .
In addition, since for all A > 0, and almost all S € Z™, we have

Em(fs ) +AQ2(fs.;) < Em(0)+0 <M.

It follows that Q(fs ;) <M/A for almost all S € Z™. Take R = (M/2)"? and use inequality (14), we complete the proof of
Theorem 3. O

Remark 4. Since m® - o0 and A == A(m)—0 as m— oo, we can find that

2(In(2C /.

Then by Theorem 3, we conclude that Tikhonov regularization algorithm with geometrically beta-mixing observations is
consistent. Thus we have generalized this classical results on Tikhonov regularization algorithm with i.i.d. samples in Wu
(2005) to geometrically f—mixing sequences.

By Theorem 3, we can easily obtain the following learning rates in weak forms.

Corollary 3. With all notations as in Theorem 3, and let D(J.) < C;(1/m®yP/@P+2d for some constant C; > 0. Then for any t> 1,
there exists a constant C, such that inequality

& 2(In(20)+1) 1 \P/@p+2d)
Efs)—E(f) < M\/%—O—Cz —5

holds true with probability at least 1—e~" provided that

M[G(d—p)—Zd]/Qp(ln(ZC)+‘L-)(p+d)/l7}.2d/017 p/d
Col20P '

m® > max{ 18(In(2C)+1),

To improve the error estimates presented in Theorem 3, we also use iteration technique to find a small ball Bo(R) that
contains fs,, this technique was first used in Steinwart and Scovel (2005) and later developed in Wu et al. (2006).

Proposition 1. Take 0 < A < 1/M?" and R > M, then for any 6 € (0,1), and any ¢ > 0,
E(fs)—E(f") < D2+ RV P+

holds true with probability at least 1—4 provided that m® > max{m,m,}, where

(p+d)/d 2 2d/p
my = max4 18In (E) [InQ@C/ONOY ] 20RC/OME 16Cy 4D
o (CoP/i12 (D(%)) 2p+2d
D)y———
p
Proof. For any 7> 1, when 0 < A < 1/M% 1, we have (M/2)"/? > M. Take R > M, and notice that if m® > m;, we have

COde/p p/(2p+2d)
m® }

&/(m,7) = 4RI+ [_

In addition, if m® > m,, we also have

/(2p+2d)
2(In20)+ 1) Coy??]”
M B — <D, 4 [W <D(2).

Then from inequality (14), we have that for any S € V(R) n W(R), inequality
Efs )—EF)+79Q(fs ;) < RYP+DD(2)4+2D()) = D(A)(2 4 RYP+D) (15)
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holds with probability at least 1—e~*. This implies fs; € Bo(g(R)), i.e. Q(fs ;) < (g(R)’, where g : R, >R, is a univariate
function defined by

gR) = (@) 1/6(2 4 RA/+a1/0,

It follows that
W(R) N V(R) = W(g(R)). (16)
Denote Ri=g(R;_1) for j € N, and let Ry = (M//)"/’. According to (16), we have

j-1
W(Ro) N <_ﬂ V(R,-)) = W(R)).

i=0

Define rj=Q2+(r_)¥?+*"% By Lemma 5.17 in Wu (2005), we have rj= [(M/2)M/0@/@+d0) | b where
b=(Bp+d)0—d)/(p+d)0—d))!/’. Thus, for & >0, choose J € N such that

In(e0)

ln< d )
(p+d)o
where |v| denotes the integer part of v € R . It follows that R; <[(M/A)*+b]. Set

1/0 e
-

Then W(R)) c W(R;) and hence W(R;) has measure at least 1—(J+2)e".
Applying (15) to R=R,, we have

Efs )—E(f*) < DOY2+ (Ry)P/ @+

holds for any S € W(R;) N V(R;). Taking T = In((J+3)/0), the measure of the set W(R;) N V(R;) is at least 1—(J+3)e~" = 1-9.
Then we complete the proof of Proposition 1. O

J= +1,

Remark 5. In the proof of Proposition 1, we use two technical conditions, that is, A <M and 0 </ < 1/M?-1. It is natural
because 1—0 as m—oo.

Remark 6. In order to better understand the significance and value of the established results for Tikhonov regularization
algorithm with geometrically f—mixing samples, we give some useful discussions as follows: First, in some sense,
f—mixing is a very “natural” assumption on non-i.i.d. sequences. For example, Vidyasagar (2003) and Meyn and Tweedie
(1993) proved that if a Markov chain {z;} is V-geometrically ergodic, then the sequence {z;} is geometrically f—mixing.
Namely, there exist constants p and o < 1 such that the f—mixing coefficient (k) satisfies

Bk) < pok (17)

for all k € N. Moreover, the f—mixing coefficient is given by
Bl < ElplP* .yl < [ piP ) mimcda)
Z

where PX(z,A) is the transition probability that the state z will belong to the set A after k time steps, 7 is the stationary
distribution of the Markov chain {z;}, p is the total variation metric between two probability measures. Especially, if a
Markov chain can be described by the recursion relation

Zep1 =f(z)+er,

where e, is noise sequence, z; € R* for some integer k, subject to three suitable assumptions (see Theorem 3.11 in
Vidyasagar, 2003 for details), then we can define a Lyapunov function V such that the Markov chain is geometrically
f—mixing. Moreover, Meyn and Tweedie (1994) have presented a method to compute the parameters y and « in inequality
(17). Thus we can obtain the parameters ¢ and o of geometrically f—mixing coefficient in inequality (17) for the Markov
chain described by the above recursion relation. However, other mixing sequences (i.e. «—mixing and ¢—mixing) do not
have this property of f—mixing sequences. The interested readers can consult Vidyasagar (2003) for the details. This
implies that these results on the learning performance of Tikhonov regularization algorithm with geometrically f—mixing
observations are suited to geometrically ergodic Markov chain samples.

Second, Vidyasagar (2003) proved that in hidden Markov models, if the underlying Markov chain has f—mixing property
(or geometrically f—mixing), then so does the corresponding hidden Markov model. Therefore, the established results in
this paper are also suited to hidden Markov models.
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5. Conclusions

In this paper, we studied the learning performance of Tikhonov regularization algorithm with geometrically f—mixing
observations. We first established two new refined probability inequalities for geometrically f—mixing sequences. We
then derived the bounds on the learning performance of Tikhonov regularization algorithm with geometrically f—mixing
samples, and proved that Tikhonov regularization algorithm with geometrically f—mixing observations is consistent. To
our knowledge, these results for geometrically f—mixing here are the first explicit bounds on the rate of convergence in
this topic. In order to better understand the significance and value of the established results in this paper, we also give
some useful discussions in the last section. By these discussions, we concluded that these established results on the
learning performance of Tikhonov regularization algorithm for geometrically f—mixing observations are not only suitable
to geometrically ergodic Markov chain samples, but also suitable to hidden Markov models. In addition, the obtained
results extended the well-known statistical learning theory for Tikhonov regularization algorithm justified previously for
i.i.d. observations in Wu et al. (2006).

Further directions of research include establishing the bounds on the better learning rates of Tikhonov regularization
algorithm with geometrically f—mixing samples, and the essential difference between the generalization ability of
Tikhonov regularization algorithm with i.i.d. samples and that for geometrically f—mixing samples. All these problems are
under our current investigation.
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